

**** di * * di * * * r

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N° 862626

Ocean integration: How can we improve coordination between ocean observing activities?

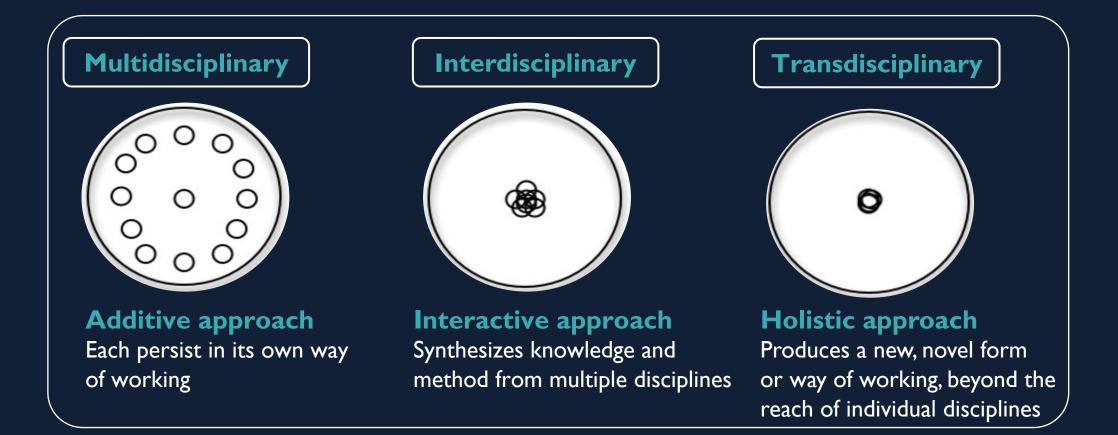
EuroSea T3.9

Adèle Révelard, on behalf of all co-authors

arevelard@socib.es

This work has led to the position paper:

Révelard A, Tintoré J, Verron J, Bahurel P, Barth JA, Belbéoch M, Benveniste J, Bonnefond P, Chassignet EP, Cravatte S, Davidson F, deYoung B, Heupel M, Heslop E, Hörstmann C, Karstensen J, Le Traon PY, Marques M, McLean C, Medina R, Paluszkiewicz T, Pascual A, Pearlman J, Petihakis G, Pinardi N, Pouliquen S, Rayner R, Shepherd I, Sprintall J, Tanhua T, Testor P, Seppaila J, Siddorn J, Thomsen S, Valdés L, Visbeck M, Waite AM, Werner F, Wilkin J and Williams B (2022) **Ocean Integration: The Needs and Challenges of Effective Coordination Within the Ocean Observing System.** Front. Mar. Sci. 8:737671. doi: 10.3389/fmars.2021.737671


Outline

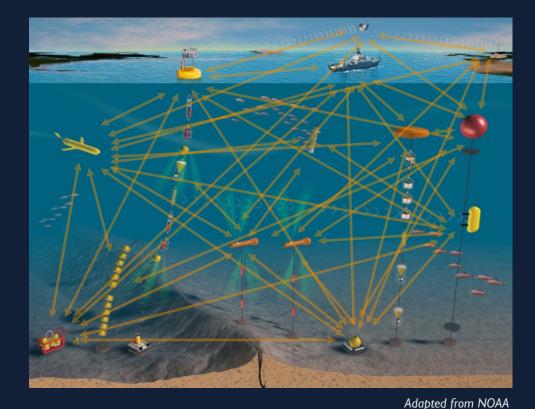
Ocean integration...

- 1. What does it mean?
- 2. Why do we need it?
- 3. The barriers and solutions (examples from different fields)
- 4. Proposal for specific actions

Ocean integration: what does it mean?

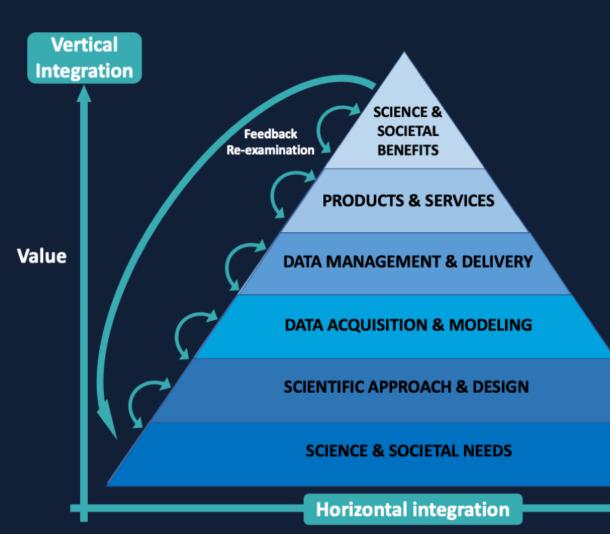
Integrated science = interdisciplinary or transdisciplinary science

Adapted from Alexander Refsum Jensenius, music researcher, https://www.arj.no/2012/03/12/disciplinarities-2/


Ocean integration: what does it mean?

Ocean = complex system \rightarrow need to combine data from:

- multiple disciplines (physics, geochemistry, biology)
- multiple in situ platforms (buoys, moorings, gliders, ships, etc.)
- multiple remote platforms (satellites, HF Radar)
- multiple numerical models


Ocean integration

optimally coordinate all these elements so they are **shaped to each other** and **form a coherent whole**

Ocean integration: what does it mean?

Ocean integration = vertical + horizontal integration

Vertical = along the value chain

- Coordinate the different stages of a single data, coming from one single platform (Argo, satellite, etc.)
- Ensure the final data is fit-for-purpose

Horizontal = at the same value level

- Create synergies between partners
- Elaborate products combining multiple data
- Ensure data are fit-for-multiple purposes

Adapted from Pearlman et al. (2019) and EMB (2021)

Ocean integration: why do we need it?

Current issues restricting our ability to advance faster:

Gaps in ocean observing coverage

- ightarrow Important processes insufficiently measured
- \rightarrow Observing networks only partially adequate for addressing new scientific challenges
- \rightarrow Observing networks do not resolve multiple spatiotemporal scales

• Insufficient sharing

- \rightarrow Lots of observations are not FAIR
- \rightarrow Most observations cannot be used to their full extent
- ightarrow Difficulties in implementing data assimilation and model verification

• Duplication of effort

- \rightarrow Little communication between teams, institutions or nations
- \rightarrow Most observations are not fit-for-multiple purposes
- \rightarrow Non-optimum use of resources

Data do not exist Data exist but they are not available Data exist but they are not fit-for-use (EOOS, 2018)

Global Ocean Science Report, 2017; 2020 IOC, 2017; NASEM, 2017; 2020 EOOS, 2018; IPCC, 2019; enges EMB, 2013, 2019; OceanObs'19; Tanhua et al. 2019; Davidson et al. 2019

Ocean integration: why do we need it?

Urgent need: assist a better ecosystem-based management of the ocean

Ocean integration is essential to commensurate with the ambition of the UN Decade of Ocean Science and the Digital Twin of the Ocean

OECD

What are the barriers and solutions to integration?

Examples from different fields

The obstacles to transdisciplinary research

Interpersonal & organizational barriers

- Difficulties in communication
- Lack of clarity regarding the goals/definition of integration
- Diverging project objectives between participants
- Lack of ownership in the project's integration phase

Time demands & external barriers

- The considerable time demands of integration
- The lack of necessary resources

Academic traditions & epistemological barriers

- The difficulty of coping with different academic traditions
- The tendencies for limited trust in other knowledge domains
- The academic merit system

Parker et al., (2002) Jakeman and Letcher (2003) Wickson et al. (2006) Tress et al. (2006, 2007)

The obstacles to transdisciplinary research

"Obstacles are embedded in the **traditional disciplinary structures, norms and practices** of our science systems" OECD report, 2020

Major barriers:

- The silos of expertise
- The disciplinary-oriented structures
- The academic merit system

OECD (2020) Stirling (2015) Newhouse and Spring (2010) Kragt et al. (2011) **OECD** publishing

12/14/2015

ADDRESSING SOCIETAL CHALLENGES USING TRANSDISCIPLINARY RESEARCH

OECD SCIENCE, TECHNOLOGY AND INDUSTRY POLICY PAPERS June 2020 No. 88

theguardian

Disciplinary dilemma: working across research silos is harder than it looks

The 'nexus' is the latest buzzword intended to lure researchers out of their disciplinary comfort zones and get them working together on the big challenges of the day. But how easy is it in practice? **Andy Stirling** investigates

Disciplinary dilemma: working across research silos is harder than it looks | Andy Stirling | Science | The Guardian

Interdisciplinary evidence-based practice: Moving from silos to synergy

Robin P. Newhouse, PhD, RN Bonnie Spring, PhD

The obstacles to transdisciplinary research

Research metrics tend to **prioritize progress in narrow specialized fields**

- Encourage quantity over quality
- Shift towards more mainstream, less risky research
- Societal relevance undervalued
- Long-term goals undervalued
- Coordination/communication undervalued

Reinforcing the silos!

The Metric Tide, 2015. Hicks et al., 2015; Benedictus and Miedema, 2016; Van Noorden, R. (2018); Nature editorial, 2018; Bleasdale, 2019; Coriat, 2019; Moher et al., 2020; OECD report, 2020, Lubchenco and Rapley, 2020; Hernandez- Aguilera et al., 2021; Delgado-López-Cózar, 2021

Fewer numbers, better science

Scientific quality is hard to define, and numbers are easy to look at. But bibliometrics are warping science – encouraging quantity over quality. Leaders at two research institutions describe how they do things differently.

REDEFINE EXCELLENCE Fix incentives publish about 2,500 peer-reviewed scientific publications per year, with higher than average citation rates. A few years ago, an evaluation committee ment house discussion cubich of corner for

correspondence

Researchers pay the cost of research

Blurred distinction

The idea of research excellence is ubiquitous, but what it means depends on the context.

Excellence is everywhere in science. Or that seems to be the plan: to make excellence ubiquitous in research. This month, the University of the West Indies in Kingston, Jamaica, became the latest academic institution to encourage its scientists to excel, setting up a Regional Centre for Research Excellence in the Caribbean.

Solutions to foster integrative research

At the academic-system level:

- Introduction of thematic/challenge-based approaches
- Creation of transversal cross-department structures
- Changes in peer review, evaluation and promotion criteria
- A reform of the research assessment system (in progress!)

"Scientific excellence" should include:

- The full range of research outputs
- The diversity of research activities
- Team science & collaboration
- Contribution to the overall research system

Declaration On Research Assessment Improving how research is assessed

The Leiden Manifesto for research metrics

Use these ten principles to guide research evaluation, urge Diana Hicks, Paul Wouters and colleagues.

advice on, good practice and interpretation. Before 2000, there was the Science Cita- tion Index on CD-ROM from the Institute for
Scientific Information (ISI), used by experts for specialist analyses. In 2002, Thomson Reuters launched an integrated web platform.
making the Web of Science database widely accessible. Competing citation indices were

We'l fillowards, such as many transmission of the second s

were introduced, such as InCites (using th

Newhouse and Spring (2010) OECD report (2020) DORA (Raff, 2012) Hicks et al. (2015) VSNU et al. (2019). Woolston (2021) EU scoping report (2021)

Towards a reform of the research assessment system

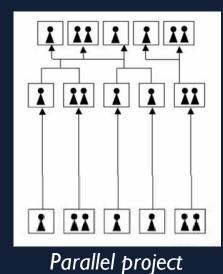
Scoping Report

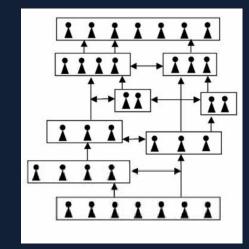
COARA

Coalition for Advancing Research Assessment

Our vision is that the assessment of research, researchers and research organisations recognises the divarse outputs, practices and activities that maximise the quality and impact of research. This requires basing assessment primarily on qualitative judgement, for which peer review is central, supported b responsible use of quantitative indicators.

Room for everyone's talent


towards a new balance in the recognition and rewards of academics



Solutions to foster integrative research

At a project level:

- Make integration an integral part of the project
- Define a common research question
- Develop an integration implementation plan
- Have strong leadership
- Have high-level interpersonal skills
- Choose an integrative project design

Integrative project

Tress et al. (2006)

17

Ten steps to success in integrative research projects

Bärbel Tress[#], Gunther Tress[#] and Gary $Fry^{##}$

Organisational silos: a common matter in business

Silos exist because of:

- Internal competition
- Lack of communication
- Lose of focus of overall company goals

Common solutions:

- I. Define a **common goal**
- 2. Have a strong leadership
- 3. Stimulate high-level **interpersonal skills**
- 4. Remove internal competitiveness
- 5. Redesign the organizational structure

Integration for managing the world's natural resources

Integrated approach = coordinated management for sustainability Ensuring the resource is used responsibly, effectively, and equitably

- **Examples:** Integrated water resource management (IWRM)
 - Integrated coastal zone management (ICZM)
 - Integrated forest management (IFM)
 - Marine protected areas (MPAs) management

Integration = taking into account many aspects :

- Knowledge and expertise integration
- Ecosystem integration
- **Social** integration
- Economic integration
- Stakeholder integration
- **Spatial** integration

Morales, 2022

Integration for managing the world's natural resources

How to manage resources responsibly, effectively, and equitably?

Top-down management

Requires:

- A central authority
- Strong leadership

Advantages:

- Set clear goals and guide implementation
- **Good alignment** with international priorities

Disadvantages:

- Rules non congruent with local conditions
- Dictatorial, users less engaged

Community-based management

Elinor Ostrom (1933-201<u>2)</u>

- Users agree on goals and implementation
- Users agree on rules, moral and ethical standards

Advantages:

- More ability to bring together diverse knowledge
- Everyone feels part of the process, more engaged

Disadvantages:

- Can slow down processes
- The issue of ego (self-interest vs. overall goal)

Ostrom, 2009; Khadka et al., 2011; Gayner et al. 2014; Serra-Llobet et al. 2016;

Collective impact organisation

When a core group of **community leaders** decide to **abandon their individual agendas** in favour of a **collective approach**

Kania and Kramer (2011)

What for?

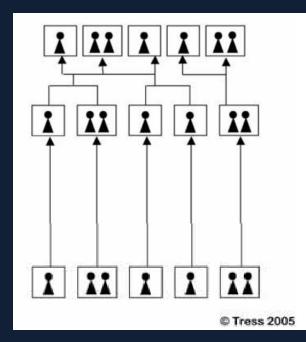
- For solving complex social problems (i.e. reforming public education, restoring wetland environments, etc.)
- When **problems are too complex** for one single entity to be able to accomplish it alone

Put forward by Weller et al. (2019) for the creation of an ocean partnerships for sustained observations (with non-profits, philanthropic organizations, U.S. federal agencies, and private sector)

Five Conditions for Collective Impact

Hanleybrown et al. (2012)

funders supporting the long-term collective process !


So...what about ocean integration?

Ocean integration: what are the issues?

In ocean observing, there are **organisational silos** because:

- Research-based system, driven by discovery and understanding
- Unpredictable short-term research-based funding
- **Discipline/platform-oriented** organization
- **Disparate** landscape
- Fragmented governance, with weak leadership
- **Hypercompetitive** culture, driven by scientific "excellence"

NASEM, 2017; 2020 IOC, 2017; EOOS, 2018; OceanObs'19; Tanhua et al. 2019; Davidson et al. 2019 EMB, 2021

Ocean integration: possible way forward

Ocean integration could be achieved through:

Building a collective impact organisation

- \rightarrow Agreeing on a common agenda & values
- → Designing a hybrid governance structure
- → Establishing clear design & implementation plan

Reaching sustainability

- → Elaborating long-term funding strategies
- → Efficiently communicate the added-value of integration

Promoting a culture shift

- \rightarrow Facilitating the transition from research to operational
- → Connecting the diverse communities
- \rightarrow Fostering FAIR data and open science practices
- → Reforming the ocean research assessment system

Ocean Integration: The Needs and Challenges of Effective Coordination Within the Ocean Observing System

POLICY AND PRACTICE REVIEWS published: 25 January 2022

doi: 10.3389/fmars.2021.737671

	Adèle Révelard ^{1*} , Joaquín Tinto
OPEN ACCESS	Mathieu Belbéoch ⁶ , Jérôme Be Sophie Cravatte ¹⁰ , Fraser David
Edited by:	Emma Heslop ¹⁴ , Cora Hörstmar
Sabrina Speich,	Miguel Marques ¹⁸ , Craig McLea
ormale Supérieure, France	Ananda Pascual ² , Jay Pearlmar
Reviewed by:	Sylvie Pouliquen ²⁵ , Ralph Rayne
ntoine De Ramon N'Yeurt,	Pierre Testor ²⁹ , Jukka Seppälä ³⁰
itv of the South Pacific, Fiji	Martin Visbeck ^{16,33} , Anya M. Wa
Mollv McCammon,	Ben Williams37
Ocean Observing System,	
United States	¹ Balearic Islands Coastal Observing and Fo
*Correspondence: Adèle Révelard	Studies (IMEDEA) (CSIC-UIB), Esporles, Sp Ramonville-Saint-Agne, France, ⁵ College o. OR, United States, ⁶ OceanOPS, Plouzané,
arevelard@socib.es	de Paris-SYRTE, Paris, France, ^e Center for United States, ¹⁰ LEGOS université de Toulo
Specialty section:	St John's, NL, Canada, 12 Physics and Phys
is article was submitted to	Marine Observing System, Hobart, TAS, Au
Ocean Observation,	Helmholtz-Zentrum für Polar- und Meeresfo
a section of the journal	Research Kiel, Kiel, Germany, 17 Ifremer, OL
Frontiers in Marine Science	19 National Oceanic and Atmospheric Admir
Received: 07 July 2021	de Hidráulica Ambiental de la Universidad c
pted: 13 December 2021	United States, 22 Institute of Electrical and E
blished: 25 January 2022	(HCMR), Heraklion, Greece, 24 Department
Citation:	Plouzané, France, 26 London School of Ecol
lard A, Tintoré J, Verron J,	and Fisheries (DG MARE), Bruxelles, Belgiu
I P. Barth JA. Belbéoch M.	Jolla, CA, United States, 20 CNRS-Sorbonn
Renveniste J, Bonnefond P,	Laboratoire d'Océanographie et de Climato
Chassignet EP, Cravatte S,	Paris, France, ³⁰ Marine Research Centre, F
n F, deYoung B, Heupel M,	Southampton, United Kingdom, 32 Instituto
Heslop E, Hörstmann C,	Mathematics and Natural Sciences, Kiel Un
Karstensen J, Le Traon PY,	of Oceanography, Dalhousie University, Hal
M, McLean C, Medina R,	³⁸ Department of Marine and Coastal Scient
Paluszkiewicz T, Pascual A,	TX, United States
,,	

Trontiers 🕈

École N

Univer

Acce

Rév

Bahun

Davidso

Margue:

in Marine Science

He Révelard^{1*}, Joaquín Tintoré^{1,2}, Jacques Verron³, Pierre Bahurel⁴, John A. Barth⁵, thieu Belbéoch⁶, Jérôme Benveniste⁷, Pascal Bonnefond⁸, Eric P. Chassignet⁹, hihe Cravatte¹⁰, Fraser Davidson¹⁺, Brad de'Young¹², Michelle Heupel¹³, ma Heslop¹⁴, Cora Hörstmann¹⁵, Johannes Karstensen¹⁶, Pierre Yves Le Traon^{4,17}, uel Marques¹⁸, Craig McLean¹⁹, Raul Medina³⁰, Theresa Paluszkiewicz²¹, nda Pascual⁸, Jay Pearlman²⁹, George Petihakis²⁰, Nadia Pinardi²⁴, ie Pouliquen²⁵, Ralph Rayner⁸⁵, Ilan Shepherd²⁷, Janet Sprintall²⁸, Totse Tanhua¹⁶, re Testor³⁹, Jukka Seppälä³⁰, John Siddorn³¹, Soeren Thomsen²⁰, Luis Valdés³², tin Visbeck^{10,33}, Anya M. Waite³⁴, Francisco Werner³⁶, John Wilkin³⁸ and Williams³⁷

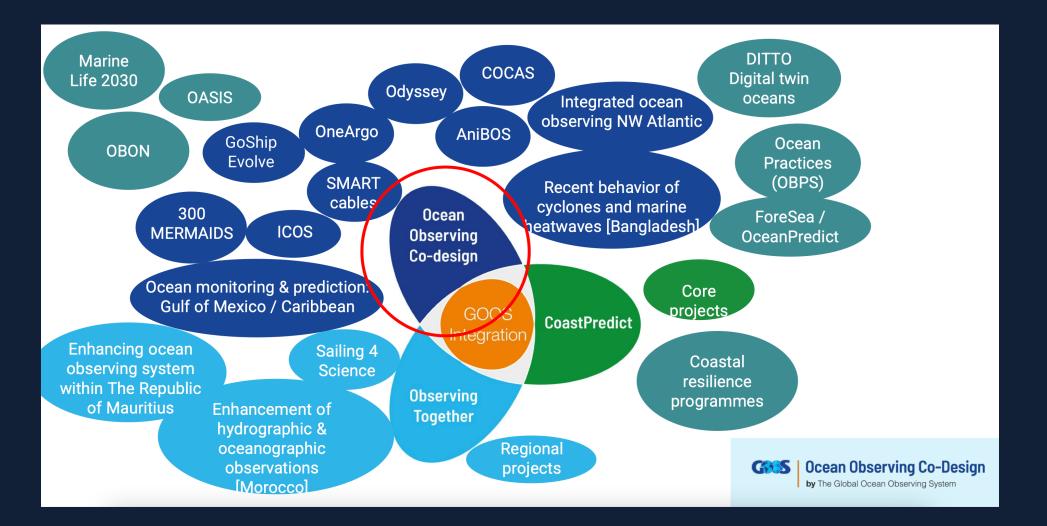
Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, France, 7 European Space Agency-ESRIN, Frascati, Italy, 8 Observatoire Ocean-Atmospheric Prediction Studies, Florida State University, Tallahassee, FL, use, IRD, CNES, CNRS, UPS, Toulouse, France, " Fisheries and Oceans, sical Oceanography. Memorial University, St. John's, NL, Canada, 13 Integrated stralia, 14 IOC UNESCO, Paris, France, 15 Alfred-Wegener-Institut, rschung, Bremerhaven, Germany, 16 GEOMAR Helmholtz Centre for Ocean DE. Plouzané. France, 18 Blue Info by Skipper & Wool, Póvoa de Varzim, Portuga nistration (NOAA), Silver Spring, MD, United States, 20 IHCantabria-Instituto le Cantabria, Santander, Spain, ²¹ Octopus Ocean Consulting LLC, Oak Hill, VA Electronics Engineers, Paris, France, 23 Hellenic Centre for Marine Research of Physics and Astronomy, University of Bologna, Bologna, Italy, 25 Ifremer, IRSI, nomics, London, United Kingdom, ²⁷ Directorate-General for Maritime Affairs rm, 28 Scripps Institution of Oceanography, University California, San Diego, La Universités (Campus Pierre et Marie Curie)-CNRS-IRD-MNHN, UMR 7159. logie (LOCEAN), Institut Pierre Simon Laplace (IPSL), Observatoire Ecce Terra, Finnish Environment Institute, Helsinki, Finland, ³¹ National Oceanography Centre Español de Oceanografía, C.O. de Santander, Santander, Spain, 33 Faculty of iversity, Kiel, Germany, 34 Ocean Frontier Institute and Department lifax, NS, Canada, 35 NOAA Fisheries, Silver Spring, MD, United States, ces, Rutgers University, New Brunswick, NJ, United States, ³⁷ Fugro, Houston

> Révelard et al. (2022) doi: 10.3389/fmars.2021.737671

Ocean integration: how to proceed?

Next step: a transdisciplinary and multi-faceted 10-year project

Two main objectives:


- I) <u>Undertake a collective reflection</u> on how to implement incremental innovative actions at the governance, funding, management and cultural levels that will create the enabling conditions for a new organizational framework to arise
- 2) <u>Demonstrate the feasibility and the added-value</u> of this integrated approach at the regional scale through pilot studies

With:

- An initial workshop in 2023 with key representatives from multiple sectors to share ideas and establish a strategic plan and roadmap for implementation
- A diversity of expertise to tackle the problem under a number of angles (scientific, financial, political, organizational, cultural)

Ocean integration: how to proceed?

Next step: a transdisciplinary and multi-faceted 10-year project

**** * * ***

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N° 862626

Merci !

Adèle Révelard arevelard@socib.es

More information in this position paper:

Révelard A, Tintoré J, Verron J, Bahurel P, Barth JA, Belbéoch M, Benveniste J, Bonnefond P, Chassignet EP, Cravatte S, Davidson F, deYoung B, Heupel M, Heslop E, Hörstmann C, Karstensen J, Le Traon PY, Marques M, McLean C, Medina R, Paluszkiewicz T, Pascual A, Pearlman J, Petihakis G, Pinardi N, Pouliquen S, Rayner R, Shepherd I, Sprintall J, Tanhua T, Testor P, Seppala J, Siddorn J, Thomsen S, Valdes L, Visbeck M, Waite AM, Werner F, Wilkin J and Williams B (2022) Ocean Integration: The Needs and Challenges of Effective Coordination Within the Ocean Observing System. Front. Mar. Sci. 8:737671. doi: 10.3389/fmars.2021.737671