ILICO Workshop NW Med, 2022-11-16 Présenté par Jean-Olivier Irisson

Observations de la diversité (zooplanctonique) en mer Une vision partielle mais j'espère

À l'échelle du bassin

Régionalisation et modèles de

Régionalisation environnementale

Division en régions aux caractéristiques proches

Variables surtout **physiques** et **biogéochimiques** (un peu de Chl a)

Biogéographie par modèle d'habitat

Ajout de la biologie: **subdivision** des régions biogéochimiques

Biogéographie par modèle d'habitat

Différentes régionalisation pour différents niveaux trophiques

La régionalisation: outil pour la gestion

Pressions différentes et de différentes intensités dans les différentes écorégions

Mais...

Des manques (gouffres...) de données

Synthèse des régionalisations

Ayata/Irisson - MerMex

Synthèse des régionalisations

Ayata/Irisson - MerMex

Impacts et plans de gestion

Groupes fonctionnels de copépodes

Préférences environnementales

Changement de distribution

Modélisation de la distribution sur 1965-1994 vs 2029-2098

Changements de richesse spécifique et de diversité fonctionnelle **faibles**

Peu de zones de changement notable des groupes fonctionnels de copépodes

Benedetti - *MerMex, PERSEUS, FunOmics*

Sources d'incertitude dans les modèles de distributions futures

À l'échelle régionale

MOOSE-GE

À l'échelle locale

Séries temporelles

Comparaison de séries temporelles

Pas de corrélation des concentrations planctoniques de site à site

Pas de corrélation entre indices climatiques et plancton ou températures locales

⇒Effets **locaux**

Berline - SESAME

Variations à Villefranche

Désaisonnalisation + analyse statistique des tendances

Réchauffement

Diminution des ressources

Chi a stable (mais changement potentiel de composition)

Beck - FORMAL

Changement de composition du phytoplancton (à Naples)

Beck - FORMAL

Morph

MANAM. A AAM

N

Composition "morphologique"

Résumée par des indices

Quels outils pour l'observation biologique?

Instruments, algorithmes et données

Des méthodes nouvelles pouvant être concertées

Fraction	Éch.	"Imagerie"	Génomique
0.2 → 3	Niskin	2×2mL + gluta + azote liquide et -80°C +/- SYBR green et cytométrie en flux	azote liquide et -80°C extraction, amplification séquençage 18SV4+16S vlfr/rosc
3 → 20	Niskin	cytométrie en flux (→10µm) vlfr/rosc + 120µL par IFCB vlfr/rosc	azote liquide et -80°C extraction, amplification séquençage 18SV4+16S vlfr/rosc
20 → 200	filet	250 mL + lugol 45 mL (max) par FlowCam vlfr/rosc	éthanol + azote liquide et -80°C extraction, amplification séquençage 18SV4 vlfr/rosc
200 →	filet	250 mL + formol 2 fractions au ZooScan vlfr/rosc	éthanol + azote liquide et -80°C extraction, amplification séquençage 18SV4 vlfr/rosc 2019

Des méthodes nouvelles pouvant être concertées

Fraction	Éch.	"Imagerie"	Génomique
0.2 → 3	Niskin	2×2mL + gluta + azote liquide et -80°C +/- SYBR green et cytométrie en flux	azote liquide et -80°C extraction, amplification séquençage 18SV4+16S vlfr/rosc
3 → 20	Niskin	cytométrie en flux (→10µm) vlfr/rosc + 120µL par IFCB vlfr/rosc	azote liquide et -80°C extraction, amplification séquençage 18SV4+16S vlfr/rosc
20 → 200	filet	250 mL + lugol 45 mL (max) par FlowCam vlfr/rosc	éthanol + azote liquide et -80°C extraction, amplification séquençage 18SV4 vlfr/rosc
200 →	filet	250 mL + formol 2 fractions au ZooScan vlfr/rosc	éthanol + azote liquide et -80°C extraction, amplification séquençage 18SV4 vlfr/rosc 20222

Standards et flux de données

Standards et flux de données... et intégration

Merci