Benthic Alkalinity and DIC Fluxes in the Rhône River Prodelta Indicating Decoupled Aerobic and Anaerobic Processes

C. RABOUILLE¹, J. RASSMANN¹, E. EITEL², C. CATHALOT³, C. BRANDILY³, B. BOMBLED¹, B. LANSARD¹, M. TAILLEFERT²

 Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ-Université Paris Saclay, France
School of Earth & Atmospheric Sciences; Georgia Institute of Technology, USA
IFREMER, France

Rationale

- Ocean Acidification (OA) is a growing concern with rising atmospheric CO₂ and in situ acidification by OM mineralization
- We have extensive knowledge about atmospheric CO₂ invasion which drives OA, maybe less about in situ remineralization

- Yet, little is known concerning mitigating processes that could increase buffering effect such as alkalinity production/fluxes in the ocean, especially from sediments
- * It has been proposed by Thomas et al. (BG, 2009) and Krumins et al. (BG, 2013) that sediment can contribute to the alkalinity budget of the coastal ocean

Background: Organic matter mineralization in sediments and DIC/TA production

10

5

- Large production of DIC in coastal sediments
- Anaerobic processes produce large alkalinity concentrations
- Oxidation of reduced product can consume all produced alkalinity

Our study objectives were:

- To quantify the DIC/TA fluxes in river delta sediments
- To identify the processes which generate these fluxes

Study area: the Rhône delta and NW Med Sea

- Use of in situ methods for measuring fluxes, i.e. benthic chambers
- Porewater and solid profiles: polarographic electrodes + DIC, Alk, SO4, Fe, Mn, NH4

In situ measurements: benthic fluxes and porewater profiles

In situ benthic chambers: fluxes

In situ micro-electrodes: O2 and pH

Complemented with onboard and laboratory measurements: - Voltametric profiles using polarographic electrodes - DIC, Alk, SO4, Fe, Mn, NH4 on porewater extracted by Rhizons

Benthic fluxes

- Nearshore sediments are a strong source of alkalinity and DIC
- The intensity of the fluxes decreases offshore
- In nearshore region, DIC and TA fluxes are decoupled from O₂ fluxes

Carbonate dissolution?

Alkalinity and DIC profiles in delta sediments...

... explained by large sulfate reduction

Stoechiometric reactions

		Reaction	$\Delta TA / \Delta DIC$
	Carbonate chemistry		
R1	CO ₂ dissolution	$\mathrm{CO}_2 + \mathrm{H}_2\mathrm{O} \longleftrightarrow \mathrm{H}_2\mathrm{CO}_3 \longleftrightarrow \mathrm{HCO}_3^- + \mathrm{H}^+ \longleftrightarrow \mathrm{CO}_3^{2-} + 2\mathrm{H}^+$	
R2a R2b	Carbonate dissolution Carbonate precipitation	$\begin{array}{l} CaCO_3 + H_2O + CO_2 \rightarrow Ca^{2+} + 2HCO_3^- \\ Ca^{2+} + 2HCO_3^- \rightarrow CaCO_3 + H_2O + CO_2 \end{array}$	+2/1 -2/-1
	Aerobic reactions		
R3 R4 R5 R6	Aerobic mineralization Nitrification Iron oxidation Manganese oxidation	$\begin{array}{l} CH_2O + O_2 \rightarrow HCO_3^- + H^+ \\ NH_4^+ + 2O_2 \rightarrow NO_3^- + H_2O + 2H^+ \\ 4Fe^{2+} + O_2 + 10H_2O \rightarrow 4Fe(OH)_3 + 8H^+ \\ 2Mn^{2+} + O_2 + 4HCO_3^- \rightarrow 2MnO_2 + 4CO_2 + 2H_2O \end{array}$	0/1 -2/0 -8/0 -4/0
	Anaerobic reactions		
R7 R8 R9 R10 R11 R12 R14 R15 R16	Nitrate reduction Manganese reduction Iron reduction Sulfate reduction FeS precipitation FeS precipitation with sulfate recycling Pyrite precipitation Anaerobic methane oxidation Methanogenesis	$\begin{array}{l} {\rm CH}_2{\rm O}+0.8{\rm NO}_3^-+0.8{\rm H}^+\to {\rm CO}_2+0.4{\rm N}_2+1.4{\rm H}_2{\rm O}\\ {\rm CH}_2{\rm O}+2{\rm MnO}_2+3{\rm H}^+\to {\rm HCO}_3^-+2{\rm Mn}^{2+}+2{\rm H}_2{\rm O}\\ {\rm CH}_2{\rm O}+4{\rm Fe}({\rm OH})_3+7{\rm H}^+\to {\rm HCO}_3^-+4{\rm Fe}^{2+}+10{\rm H}_2{\rm O}\\ {\rm CH}_2{\rm O}+\frac{1}{2}{\rm SO}_4^{2-}\to {\rm HCO}_3^-+\frac{1}{2}{\rm HS}^-+\frac{1}{2}{\rm H}^+\\ {\rm Fe}^{2+}+{\rm HS}-\to {\rm FeS}+{\rm H}^+\\ 8{\rm Fe}({\rm OH})_3+9{\rm HS}^-+7{\rm H}^+\to 8{\rm FeS}+{\rm SO}_4^{2-}+20{\rm H}_2{\rm O}\\ 8{\rm Fe}({\rm OH})_3+15{\rm HS}^-+{\rm SO}_4^{2-}+17{\rm H}^+\to 8{\rm FeS}_2+28{\rm H}_2{\rm O}\\ {\rm CH}_4+{\rm SO}_4^{2-}\to {\rm HS}^-+{\rm HCO}_3^-+{\rm H}_2{\rm O}\\ {\rm CH}_2{\rm O}\to \frac{1}{2}{\rm CH}_4+\frac{1}{2}{\rm CO}_2\end{array}$	0.8/1 4/1 8/1 1/1 2/0 -2/0 2/0 2/1 0/0.5

Coupling of iron and sulfur cycles Station A & Z

[HS-] is insignificant although sulfate reduction is complete

Rassmann et al., in rev. Mar. Chem

15 0

2

4 6

—•— ΣΗ,S (μM)

[Fe²⁺] is very large indicating iron oxide reduction coupled to organic matter mineralization or sulfide oxidation

> \rightarrow Large precipitation of FeS and FeS₂ accompanied by alkalinity net production

$$\frac{9}{4}CH_2O + SO_4^{2-} + Fe(OH)_3 + \frac{9}{4}HCO_3 + \frac{1}{4}H^+ + FeS + \frac{5}{2}H_2O$$

$$\frac{17}{4}CH_2O + 2SO_4^{2-} + Fe(OH)_3 + \frac{17}{4}HCO_3^{-} + \frac{1}{4}H^+ + FeS_2 + \frac{5}{2}H_2O + H_2O_3^{-} + \frac{1}{4}H^+ + FeS_2 + \frac{5}{2}H_2O_3^{-} + \frac{1}{4}H^+ + \frac{1}{4}H^+$$

Precipitation and burial of iron sulfide

Large concentrations of particulate FeS with FeS_o as precursor of precipitation

Burial FeS	A and Z	E
Sedimentation rate (cm yr ¹)	30	0.1
Mean AVS (µmol g-1)	19.5 ± 5	9 ± 2.3
Burial FeS (mmol S m ⁻² d ⁻¹)	12.5 ± 4	0.02 ± 0.01

Conceptual model: alkalinity generation with burial of reduced species

- Low sedimentation rate coupled to limited sulfate reduction induce little or no alkalinity flux (only linked to denitrification)
- Large sedimentation rates with intense FeS production create a sink of reduced products and a source of alkalinity to the BW

Alkalinity balance in prodelta sediments

Alkalinity balance	A and Z (prodelta)	E (Contin. Shelf)
Sedimentation rate (cm yr ⁻¹)	30	0.1
Mean AVS (µmol g⁻¹)	19.5 ± 5	9 ± 2.3
Burial FeS (mmol S m ⁻² d ⁻¹)	12.5 ± 4	0.02 ± 0.01
Alkalinity source (FeS prod - mmol m ⁻² d ⁻¹)	25 ± 8	0.04 ± 0.01
Alkalinity flux (Benthic C mmol m ⁻² d ⁻¹)	47.8 ± 30.4	3.9 ± 9

- In the nearshore region (A&Z), burial of FeS is in the same order of magnitude as alkalinity flux
- On the shelf (E), they are decoupled.

Conclusion

- Large benthic alkalinity and DIC fluxes arise from the Rhône River prodelta
- These fluxes are related to large FeS precipitation and burial: they show the same order of magnitude
- River deltas are prone to anoxic mineralization and can potentially produce and bury FeS as :
 - They receive large amounts of organic material
 - Significant terrigenous material with iron is dicharged
 - They exhibit large sedimentation rates
- There might be a significant source of Alkalinity from river delta sediments
- In RiOMars (River-dominated Ocean Margins) this may limit acidification created by anthropogenic CO₂ invasion and in situ respiration

Acknowledgments

Captains and crews of the RV Thetys II

Funding by:

- ANR-AMORAD Investissement d'Avenir
- Mermex-MISTRALS

Thanks you for your attention!