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* Ocean Acidification (OA) is a 
growing concern with rising
atmospheric CO2 and in situ 
acidification by OM mineralization

* We have extensive knowledge
about atmospheric CO2 invasion 
which drives OA, maybe less about 
in situ remineralization

Rationale

* Yet, little is known concerning mitigating processes that could increase
buffering effect such as alkalinity production/fluxes in the ocean, especially
from sediments

* It has been proposed by Thomas et al. (BG, 2009) and Krumins et al. (BG, 2013) 
that sediment can contribute to the alkalinity budget of the coastal ocean



Background: Organic matter mineralization
in sediments and DIC/TA production

• Large production of DIC in 
coastal sediments

• Anaerobic processes produce
large alkalinity concentrations

• Oxidation of reduced product
can consume all produced
alkalinity

Our study objectives were:
• To quantify the DIC/TA fluxes in 

river delta sediments
• To identify the processes which

generate these fluxes



Study area: the Rhône delta and NW Med Sea

Station A and Z: 
prodelta
Characteristics:
Large mineralization, 
large sedimentation
rate (30cm/yr)

Station E:
Continental shelf
Characteristics:
Low mineralization, 
low sedimentation
rate (0.1 cm/y)

Rhone River:
1700 m3/s
5-10 Mt sediments

• Use of in situ methods for measuring fluxes, i.e. benthic chambers
• Porewater and solid profiles: polarographic electrodes + DIC, Alk, 

SO4, Fe, Mn, NH4 



In situ measurements: benthic fluxes and 
porewater profiles

In situ benthic chambers: fluxes In situ micro-electrodes: O2 
and pH

Complemented with onboard and 
laboratory measurements: 
- Voltametric profiles using
polarographic electrodes
- DIC, Alk, SO4, Fe, Mn, NH4 on
porewater extracted by Rhizons



Benthic fluxes

• Nearshore sediments are a strong source of alkalinity and DIC

• The intensity of the fluxes decreases offshore

• In nearshore region, DIC and TA fluxes are decoupled from O2 fluxes



Carbonate dissolution?

• Porewaters are 
supersaturated with CaCO3 

• Ca2+ profiles show no 
dissolution but rather
precipitation à this should
decrease alkalinity

H+ + CaCO3ßà Ca2+ + HCO3
-



Alkalinity and DIC profiles in delta sediments…

…explained by large sulfate reduction

D

D

: A and Z

Rassmann et al., 
2016, BG



Stoechiometric reactions



Rassmann et al., 
in rev. Mar. Chem

[HS-] is insignificant although sulfate reduction is complete

Coupling of iron and sulfur cycles

[Fe2+] is very large indicating iron oxide reduction coupled to organic
matter mineralization or sulfide oxidation

à Large precipitation of FeS and FeS2
accompanied by alkalinity net production

Station A & Z



Precipitation and burial of iron sulfide

Burial FeS A and Z E

Sedimentation rate (cm yr-1) 30 0.1

Mean AVS (µmol g-1) 19.5 ± 5 9 ± 2.3

Burial FeS (mmol S m-2 d-1) 12.5 ± 4 0.02 ± 0.01

Large concentrations of particulate FeS with FeS0 as precursor of precipitation



• Large sedimentation rates with intense FeS production create a sink
of reduced products and a source of alkalinity to the BW

Conceptual model: alkalinity generation with
burial of reduced species

• Low sedimentation rate coupled to limited sulfate reduction induce
little or no alkalinity flux (only linked to denitrification)



Alkalinity balance A and Z
(prodelta)

E
(Contin. Shelf)

Sedimentation rate (cm yr-1) 30 0.1

Mean AVS (µmol g-1) 19.5 ± 5 9 ± 2.3

Burial FeS (mmol S m-2 d-1) 12.5 ± 4 0.02 ± 0.01

Alkalinity source (FeS prod - mmol
m-2 d-1)

25 ± 8 0.04 ± 0.01

Alkalinity flux (Benthic C. - mmol
m-2 d-1)

47.8 ± 30.4 3.9 ± 9

Alkalinity balance in prodelta sediments

• In the nearshore region (A&Z), burial of FeS is in the same order of 
magnitude as alkalinity flux

• On the shelf (E), they are decoupled.



Conclusion

§ Large benthic alkalinity and DIC fluxes arise from the Rhône River prodelta 

§ These fluxes are related to large FeS precipitation and burial: they show the 

same order of magnitude

§ River deltas are prone to anoxic mineralization and can potentially produce and 

bury FeS as :

§ They receive large amounts of organic material

§ Significant terrigenous material with iron is dicharged

§ They exhibit large sedimentation rates

§ There might be a significant source of Alkalinity from river delta sediments

§ In RiOMars (River-dominated Ocean Margins) this may limit acidification created

by anthropogenic CO2 invasion and  in situ respiration  
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